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Abstract—The effects of the rotating inner and outer tube on the turbulent fluid flow and heat transfer in
a concentric annulus are examined experimentally and by analysis. In the experimental investigations the
heat transfer rate in the hydrodynamic and thermal entrance region of the rotating annulus and the velocity
and temperature profiles at the end of the test section were determined. The analytical study was performed
for flow and heat transfer of a fully developed turbulent flow in a rotating annulus by applying a modified
mixing length theory. To express increase or suppression of turbulence, due to the centrifugal forces in the
fluid caused by tube rotation, the mixing length was modified by a function of the Richardson number.
The theoretical results for fully developed flow are compared with the experimental findings at the axial
position of 60 hydraulic diameters downstream of the entrance.

1. INTRODUCTION

Frum rLow and heat transfer in rotating channels
have been of great interest for many years. Taylor
[1] investigated the stability of the flow between two
concentric rotating cylinders. He found regular toro-
idal vortices in the annular gap for rotational speeds
of the inner cylinder above a critical value. These so-
called Taylor vortices develop because of an instability
of the laminar flow due to a strong decrease in centri-
fugal forces with increasing radius. In a closed annular
gap with no axial throughflow and with a rotating
inner tube, Taylor vortices will arise at Taylor num-
bers Ta,, > 41.2
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With the aid of a bifurcation analysis for Re, = 0,
Chandrasekhar [2] found a stabilizing effect by
an imposed axial flow. For small flow-rate Reynolds
numbers Re,, the critical Taylor number increases
according to

Ta(Re,} = Ta,(Re, = 0)+26.5 Re’. )

The combined axial and rotational flow in an annulus
with a rotating inner cylinder was studied exper-
imentally by Kaye and Elgar {3]. For flow-rate Reyn-
olds numbers Re, < 2000, four flow regimes were
detected in an annular gap

laminar flow

laminar flow with Taylor vortices
turbulent flow

turbulent flow with Taylor vortices.

t Dedicated to Professor Dr.-Ing. Dr.-Ing.e.h. Ulrich
Grigull.
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The changes in the structure of the vortices with
increasing axial velocity were investigated by Gu and
Fahidy [4] by visualization. At small axial flows the
individual Taylor cells get inclined and partial over-
lapping begins to appear. With further increase in the
axial flow rate, the cell structure degenerates pro-
gressively to a disorderly pattern. At high axial flow
rates the Taylor cells are hardly detectable and the
complete degeneration of Taylor vortices is assumed.

Kuzay [5] experimentally studied the turbulent flow
and heat transfer in a concentric annulus between a
stationary and uniformly heated outer tube and a
rotating adiabatic inner tube. The rotation rate
N, =uv,,/0, was varied up to 2.8 in the flow-rate
Reynolds number range 1.5x 10* < Re, < 6.5x 10%,
Imposing a rotation to the axial flow, he found that
the wall temperature of the outer tube diminished and
the radial temperature profiles at the end of the heated
annular gap, with a length of 36 hydraulic diameters,
appreciably flattened. With increasing rotation, the
inner boundary temperature rises while the outer wall
temperature drops sharply. Therefore, the Nusselt
number of a mixed-mode flow increases with increas-
ing rotational velocity of the inner tube.

This paper describes the effect of independently
rotating the inner and outer tube of a concentric annu-
lus on the velocity and temperature distribution and
on the heat transfer to a fluid flowing inside the annu-
lar gap. While the experiments deal with the fluid flow
and heat transfer in the hydrodynamic and thermal
entrance region, the analytical study was performed
for a fully developed turbulent flow through a rotating
annulus by applying a modified mixing length theory.
To express the increase or suppression of turbulence,
due to centrifugal forces in the fluid caused by tube
rotation, the mixing length was modified by a function
of the Richardson number. To our knowledge these
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a thermal diffusivity

Cp specific heat at constant pressure

dy, hydraulic diameter

L length of rotating test section

/ hydrodynamic mixing length in rotating
annulus

1y hydrodynamic mixing length in
stationary annulus

N,y rotation rate of inner tube

N, rotation rate of outer tube
Nu Nusselt number

mean Nusselt number

Pr Prandtl number

Pr. turbulent Prandtl number

Pr,, turbulent Prandtl number far from the
wall

P pressure

4. heat flux density in radial direction

Re.  flow-rate Reynolds number

Re, rotational Reynolds number

Ri Richardson number
¥ radial coordinate

" radius of inner tube
¥ radius of outer tube

T

$ gap width
T time mean temperature
T temperature fluctuation

NOMENCLATURE

Ta  Taylor number
,. U, 0. time mean velocities in ‘
r, @, z-directions
- velocity fluctuations in
r, @, z-directions

e S

P
) s
I‘)‘? l’(,n 2

. mean axial velocity over annular cross
section
i dimensionless radial distance from the

inner wall

¥, dimensionless radial distance from the
outer wall

z axial coordinate.

Greek symbols

o heat transfer coefficient

B constant

& eddy viscosity of momentum
5, eddy diffusivity of heat

# dynamic viscosity

{) dimensionless temperature
K radius ratio

J. thermal conductivity

‘i friction factor

v kinematic viscosity

o density

T shear stress

@ tangential coordinate.

are the first investigations performed in an annulus
between co-rotating and counter-rotating tubes with
turbulent axial flow.

2. EXPERIMENTS

A schematic outline of the horizontally mounted
experimental apparatus is shown in Fig. 1. The rotat-
ing and heated test section has a length of
Ljd, = 60.94, with a radius ratio »,/r, = 0.8575 and
an outer tube i.d. of D = 180 mm. The outer tube is
heated electrically with a thin heating foil by means
of a slip ring arrangement. The inner tube is made of
synthetic, low conductivity material to obtain adia-
batic conditions and is coated with a very thin tin foil
to minimize heat radiation. In order to measure the
axial development of the wall temperatures, both
tubes arc instrumented with thermocouples. The
thermoelectric voltages were transmitted from the
inner rotating tube to the stationary instrumentation
with the aid of slip rings and from the outer rotating
tube by a telemetric device.

At the end of the heated and rotating section a
cylindrical three-hole aerodynamic probe as well as a
hotwire probe could be inserted into the annular gap
through small holes and traversed in the radial direc-
tion, in order to obtain axial and tangential velocity

profiles. Step motors rotate the probe automatically
against the main flow direction of the fluid. Tem-
perature profiles could be detected by a traversable
thermocouple probe on the other side of the annular
gap at the end of the rotating test section.

Air is supplied by a centrifugal blower which is
arranged at the end of the test rig to avoid heating of
the air outside the test section. The inlet consists of
an air filter, honeycombs and two wire mesh screens.
The inlet section has a non-rotating length of six
hydraulic diameters (d, = 2{r,—r,)) with the same
radius ratio as the rotating test section. Behind the
heated test section a mixing chamber for measuring
the exit bulk temperature, a downstream non-rotating
pipe, a Venturi nozzle for measuring the flow rate and
the centrifugal blower are arranged. Rotation of both
tubes was accomplished by means of two variable
speed d.c. motors and pulley drives. The drive mech-
anisms provided continuous variation of the
rotational speed from 50 to 2000 r.p.m.

The flow-rate Reynolds number Re, was varied in
the range 3000 € Re. = 0.d,/v < 30000 up to rota-
tional Reynolds numbers Re,, = v, dy/v < 20000
at the inner tube and Re,; = v,.d/v < 30000
at the outer tube. Heat transfer coefficients and
Nusselt numbers were determined from measure-
ments of the inlet and outlet air temperatures, the
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F1G. 1. Experimental apparatus.
wall temperatures of the outer heated tube and the continuity equation
mass flow. b, =0 3)
radial momentum equation
3. ANALYSIS vl dp 10
. . A . K N _p7=—6_+"7 (rT,,) Top s (4)
In the theoretical investigation the governing time- r rooror
averaged equations for mass conservation, the three  tangential momentum equation
momentum equations and finally the energy equation
are solved after some simplifications for a fully 0= _5_ (*1,0); 5
developed and stationary flow of a Newtonian fluid. or>
With this theoretical model the axial and tangential . .
. . axial momentum equation
velocity profiles, the temperature profile, the friction
factor and the Nusselt number for fully developed 0 Bp 6
flow can be determined. T oz + ror ( re.); (6)
The following equations will be given in terms of a .
cylindrical coordinate system, with r, ¢, z being the ~ SN€r8Y equation
radial, tangential and axial coordinates. The cor- T
responding time-averaged velocities are v,, v,,, v,, the pepls 5 = 'r o (?’ 7:)- G

velocity fluctuations o], v, v}, the time-averaged tem-
perature is T and the temperature fluctuations 77.

In stationary flow, with constant wall heat flux, all
time derivatives become zero. Also, all derivatives in
the axial direction become zero in a fully developed
flow, except the constant pressure and temperature
gradient. Additionally, there are no variations in the
tangential direction, because of the axial symmetry of
the system. With these simplifications and the assump-
tions of a negligible dissipation rate and no body
forces, except the centrifugal force, the equations of
conservation for an incompressible turbulent flow will
take the form:

For a Newtonian fluid with constant properties the
components of the stress tensor can be written as

T, = —puj]
Top = —ﬂ;’_:p;;
a v@ g
fm, = ur 6?‘ —pu, U
= %; vivl (8
’7 a p f’ I )

The radial component of the heat flux vector is
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g, = —/.*(_5’;' +pLI’L"T . (9)

Because of the assumption of a fluid with constant
properties, the equations of motion and the energy
balance are uncoupled and will be solved separately,
as shown in the following sections.

3.1. The momentum equations

For solving the momentum equations in the r, @, =-
directions the components of the turbulent Reynolds
stress tensor must be replaced by new terms of a
turbulence model. In this paper an eddy viscosity
model has been used to calculate the turbulent Reyn-
olds shear stresses

(10)

Applying a modified Prandtl mixing length theory,
the eddy viscosity can be written in the form

v, ¥ d (v, \V |
& = /2 el S 4

as proposed by Koosinlin ez a/. [6}. The mixing length
! is affected by the centrifugal force in a rotating
system. For this reason Bradshaw [7] proposed the
equation

(11)

! 1

Iy 1+BRi 2)
to modify the mixing length /, of a fluid in a non-
rotating system with the dimensionless Richardson
number R/ and the empirical constant 8. A common
correlation of the mixing length /, in a non-rotating
straight duct is Nikuradse’s mixing length expression
[8], which is multiplied by van Driest’s damping
factor, in order to describe the disappearing mixing
length near the wall in the viscous sublayer,

.y Dp—p—p, ¥
fo _razry [0.14—0.08( TRl ‘>
¥ 2r, Fa—r,

,0_{}6<§£:—1? ’1)4:1(1 —¢ <f.:“26>)(] _e’(fz'Z(’)).
Fo—¥y

(13)

In equation (13), 7, and ¥, denote the dimensionless
distances from the inner and outer wall of the annular
duct:

D O N e
7= o J G
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L (= npg(rs) e . ’ )1

Fo= SR < e (J ((
/ B pm‘ A\

(50 ))) o

where v (r) is the friction velocity at the inner and
outer wall. The Richardson number Ri is defined by
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In a fully turbulent straight duct flow without
rotation, the Richardson number is equal to zero. In a
rotating annular duct with radially growing tangential
velocity. and therefore Ri > 0, the stabilizing effect of
the centrifugal forces suppress the mixing length (see
equation (12)). If the rotational speed of the inner
tube is higher than that of the outer tube, Ri will
become negative and the mixing length will increase.
According to our experimental findings, the constant
Bissetto i = 1 for positive values of Riand fi = 2.5
for negative Richardson numbers.

After replacing the turbulent Reynolds stresses
(equation (10)) by a function of the eddy viscosity
(equation (11)) and after introducing the friction
coefficient

(15)

g

(16)

Ap =

o

the momentum equation in the tangential direction
will take the form

0= ((H—at)rR i— (5‘">) (17
oY ¥
and in the axial direction it is
At 10 ~ Ou. )
T4, i ((‘ oo > (8)

For the radial direction it can be shown that the radial
pressure gradient is neghgible as compared to the
mean pressure in the duct.

For the numerical solution of the momentum equa-
tions the following dimensionless quantities are intro-
duced :

radius

radius ratio

length

[SH
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axial velocity

N
|
QI!NQ

o

tangential velocity

Uy =

o Ieg

)

flow-rate Reynolds number

Rgz = % - 522"2(1 ""’C);
v v
rotation rates
N, = 3 N, = Y2
1 _z 3 2 52 )
eddy viscosity
. &
&=
v
mixing length
~ 1

Since the velocities 7, and £, are only functions of
the radial coordinate 7, the parnal differentials are
replaced by total dlﬁ‘erentlals in the following equa-
tions. In the tangential momentum equation

d vos 4 [T,

and in the axial momentum equation

Ag Re, 1d
~w~—e~—;a—,((1+s,)r ) @

£, denotes the dimensionless eddy viscosity

=i (@) +(a(3))) @
]

T= 1-x [O 14—0. gg(%t_lf) 0.06(&—
2 K 1—-x

(1+ﬂR )(1 —(i,i26))(]___,e—(fg/26))_ (23)

The Richardson number and the dimensionless dis-
tances from the inner and outer tube are defined as
follows :

20

with the dimensionless mixing length

Ri=— 4)
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The boundary conditions at the surfaces of the inner
and outer tube can be expressed as

s

=K: b, b, =N,

5, =N, (26)

e

=1: 7,

The above differential equations are solved numeri-
cally, applying a finite difference method. The numeri-
cal integration yields the axial and tangential velocity
distribution and the friction coefficient.

3.2. The equation of energy conservation

For the solution of the energy equation (7) a tur-
bulence model is also required, which combines the
turbulent energy flux with the mean values of velocity
and temperature. Similar to the eddy viscosity ¢, in
the momentum equation, the eddy diffusivity ¢,

er ¢, 0T

I),T =8q57:ﬁ5

@n

is introduced. With the turbulent Prandtl number
according to Kays and Crawford [9]

1 1
) Pry, Prm

—(C%’Pr)2<1—exp <—C—£vl Prm)4> (28)

the energy equation will take the form

12 ( T)
(a+e)r—
r

After introducing the dimensionless temperature

- i
Pr,

_éar

0. 5= @9

T—T,
=i 2l ) (30)

Gw 2

the energy equation can be written as

Re, Pr @_‘_1_@ 1E~56 1
ooz e\t e ) 4D

The boundary conditions for a fully developed flow
with constant heat flux at the outer tube and an adia-
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batic inner tube are

L 5(3_0
rERe T
X o0 [
Fomm l AT (1
oF  2(1—x)
i 2(1=x)
.s},"v'a“'x P ~~A‘f~ 32
‘[A 057 OF Re. Pr (32)

Under these conditions the fluid temperature increases
linearly in the axial direction, leading to a constant
radial temperature profile for large values of Z. In this
case the energy equation has a solution of the form

0z, 7) =T (@ +Y (7). (33)
With the axial temperature distribution
P = 42 34
& = Re. Pr{l +x) (3

the energy equation (31) can be written as

£ 1 - & \. 0¥ (35)
[ pr) )

The numerical solution of this differential equation,
utilizing the finite difference method, yields the axial

0.5+ Theory Experiment
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e Ny=0 Ny= O
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and radial temperature distribution of the fluid in the
annulus.

The heat transfer coefficient is determined from the
temperature distribution. The Nusselt number Is
based on the temperature gradient at the outer wall
and the local difference between wall temperature and
fluid bulk temperature:

o0 |
201 —x) 4;
Ny = ady OF oy 36)
ST ey, ‘

With the temperature gradient at the outer wall from
equation (32), equation (36) reduces to

1
= 3
0"’ H"”l» (~7)

with a bulk temperature 0, which is identical to
the temperature I'(Z) from equation (34) at the axial

.position £.

4. RESULTS AND DISCUSSION

Both in the experimental investigation of the heat
transfer in the hydrodynamic and thermal entrance
region (z/d, &~ 60) and in the theoretical study of the
fully developed flow (z/d, —» ). a significant influ-

2 Ny=1  Ny=—1 .
3 — N=2 Ny=-2 o
A o- - NmZ o Np=-3 4
1 4\ Theory Experiment
b Re,=10000
v 4
£ 0
v, 3
z -
—1
~7 -
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~3-
TTTTTTT LIS B B 1 I Tt 7 T
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1 o Ng=2 N=-2
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®w :
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0.050 0@ °
| o
«t*”
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2" o a0 o4

1. 5
0.025— 8 puo ©

33

fdd

0.000 ™
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T T I T l T I
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T
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Fic. 2. Velocity and temperature distributions for Re, = 10000, with N, and N, as parameters and the
outer wall temperature 8,,.
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ence of rotation on heat transfer and fluid flow was
observed. The experimental and theoretical results are
shown and discussed as follows.

4.1. Velocity and temperature distribution

The radial distribution of the fluid velocity and
temperature was measured at the end of the test sec-
tion (z/d, ~ 60) and calculated for fully developed
flow. The effects of the rotation rates N, and N, on
the axial and tangential velocity distribution and on
the temperature profile are shown representatively in
Fig. 2 for the case of counter-rotating tubes. Con-
cerning velocity and temperature profiles of the other
co- and counter-rotating configurations under con-
sideration, the reader is referred to ref. {10]. The vel-
ocities and temperatures are normalized according to
equations (19) and (30).

With increasing rotation rates N, and N, of the
tubes rotating in opposite directions, both velocity
profiles approach a more turbulent shape which cor-
responds to increasing turbulent fluctuations in the
fluid. The same effect can be observed at the radial
temperature distributions. The curves are aligned in
an orderly manner in passing from the uniform heat
flux outer boundary to the adiabatic inner boundary.
At the outer wall a large temperature decrease can
be detected. With increasing rotation in the opposite
direction, the inner boundary temperature increases
and the temperature at the outer wall decreases. These
changes of the radial temperature profiles are caused
by enhanced mixing due to flow rotation between
counter-rotating tubes. However, it should be
emphasized that co-rotating tubes cause a quite
different effect on heat transfer. As shown later, the
Nusselt number decreases down to its minimum in the
case of co-rotating tubes, when both tubes have the
same number of revolutions.

Some results of the wall temperature distribution
at the outer tube 6,, are also plotted in Fig. 2. With
uniform heating, the wall temperature attains a linear
increase at fully developed flow, while the initial
region shows a parabolic rise. If both tubes rotate in
opposite directions, the wall temperature of the outer
tube diminishes over the whole length of the test

107

A~(1+0.0925 &) 0.316 Re, == |
1 — Theory H

10~ ——i
5000

LI T t t

| |
10000 50000

Re

z

F1G. 3. Calculated friction factor Ay for fully developed flow
as a function of Re, with N, and N, as parameters.
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section. It should be emphasized that the effects shown
in Fig. 2 are only valid for counter-rotating tubes. A
survey of the different effects of independently rotat-
ing tubes on heat transfer is given later.

4.2. Friction factor

In Fig. 3 the friction factor Ay is plotted against the
flow-rate Reynolds number Re, for various values of
the rotation rates N, and N,. With increasing N, for
N, =0, a remarkable rise in Az can be observed.
An additional counter-rotating outer tube leads to a
further small increase of Az. On the other hand the
friction has its minimum in the case of co-rotating
tubes. A mere rotation of the outer tube, with the inner
tube at rest (N, = 0), causes only a small increase of
the friction factor. For both rotation rates equal to
zero (N, = N, =0), the friction factor is equal to
the value predicted by the Blasius resistance formula,
modified by Kakag et al. [11] for an annular flow,
according to Ax = (1+0.0925x)0.316 Re; *2°.

4.3. Nusselt numbers

In Fig. 4 the Nusselt numbers are plotted as a func-
tion of the flow-rate Reynolds number Re,, with the
rotational Reynolds numbers Re,, = v,,*d,/v and
Re,, =v,,"dy/v, respectively, as parameters, visu-
alizing the influence of mere inner and outer rotation.
The measured Nusselt numbers Nu, are determined

Theory
H (2/d,==)
{ O Re,q=20000 ——
i © Re,y=10000 —— I
i . Re’-ls o

5 +—t

J
5000 10000

Re,

100

é Experiment Theory
1 (z/d,=60) (z/d;==)

i O Reyy=20000 ——
0 Re,p=10000 - .
L} Re,2= o}

5 : L
5000

LA B N i ; ; "
10000 50000
Re,

FI1G. 4. Nusselt numbers Nu for the cases of mere inner and

outer tube rotation, respectively, as a function of Re, with

Re,, and Re,, as parameters. Measurements at z/d, ~ 60,
theoretical results for z/d, = co.
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Re,= 3000

F1G. 5. Three-dimensional representation of the measured
mean Nusselt numbers Nu,, as a function of N, and N, at
Re. = 3000.

at z/d, ~ 60, whereas the theoretical values Nu,, have
been calculated for fully developed flow. It is obvious
that the flow is not fully developed at z/d, = 60.

With growing rotational Reynolds number of the
inner tube, Re,,, and a stationary outer tube, a
remarkable increase in the Nusselt number can be
observed which is proportional to the rotation rate
N; = Re, /Re.. However, in the case of the outer tube
rotating and the inner tube at rest, the Nusselt number
does not change significantly, except for very low flow-
rate Reynolds numbers and high rotation rates N,. In
this case the calculations reveal an increase of the
Nusselt number. Unfortunately no experimental data
are available in this region.

In Figs. 5-8 the measured mean Nusselt numbers,
Nu,,, at different flow-rate Reynolds numbers are
plotted as functions of the two rotation rates N, and
N,. In this presentation Nu,, has been divided by the
Nusselt number Nu,, ,, measured for the non-rotating
annulus. With stationary outer tube (N, =0) and
increasing N, a remarkable rise in the Nusselt number
can be observed. An additional counter-rotating outer
tube (N, < 0) again leads to a small increase of the

H. Pritzer and H. BEER

Re,= 10000

FIG. 7. Three-dimensional representation of the measured
mean Nusselt numbers Nu, as a function of N, and N, at
Re_ = 10000.

Nusselt number. On the other hand the heat transfer
rates decrease down to their minimum, in the case of
co-rotating tubes (N, > 0), when the tubes have
nearly the same number of revolutions. In the region
0.6 < N,/N, < 0.9, a small decrease of the Nusselt
number can be detected. As shown earlier, a sole
rotation of the outer tube has only an unimportant
influence on the heat transfer rate in the range of
Reynolds numbers under consideration. At high
flow rate Reynolds numbers, Re. = 30000, measure-
ments could be made only for rotation rates N < 1.
In this case no significant changes in heat transfer were
determined.

In Fig. 9 measured and calculated Nusselt numbers
are compared exemplarily for a flow-rate Reynolds
number Re. = 5000. The heat transfer rates were
measured at the axial position z/d, = 60, while the
theoretically determined values are valid for fully
developed flow. The experimental results are in close
agreement with the theory, although the theoretical
analysis mostly underpredicts the experimental fin-
dings.

Co-rotating or counter-rotating tubes have a very

FiG. 6. Three-dimensional representation of the measured
mean Nusselt numbers Nu,, as a function of N, and N, at
Re, = 5000.

FiG. 8. Three-dimensional representation of the measured
mean Nusselt numbers Nu,, as a function of N, and N, at
Re. = 20 000.
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FiG. 9. Comparison of the calculated and measured Nusselt
numbers Nu as functions of N, and N, for Re, = 5000.
Theoretical results for z/d, = oo, measurements at z/d,, ~ 60.

different influence on heat transfer in an annular gap,
as revealed above. Heat transfer will decrease with
radially growing tangential velocity (Ri> 0) and
small differences between the rotational velocities of
the two tubes. In contrast to this, the heat transfer
rates rise with radially decreasing tangential velocity
(Ri < 0) and very different rotational velocities of the
tubes.

4.4, Influence of radius ratio

All previous experimental and theoretical results
have been gained for a radius ratio r,/r, = 0.8575.
Because of a considerable experimental complexity
the influence of the radius ratio on heat transfer was
studied only with the aid of the theoretical model. In
Fig. 10 the distributions of the Nusselt number are
visualized for different radius ratios r,/r, = 0.5,
0.8575 and 0.95. All calculations were performed for
a flow-rate Reynolds number of Re, = 30000. The
influence of the radius ratio is most obvious for the
case of mere outer rotation (N, 20; N, =0). For
low radius ratios (r,/r, = 0.5) the Nusselt number
decreases with increasing rotating ratio N,, whereas
for high radius ratios (r,/r, = 0.95) an increase of Nu

Re,=30000

2755
7>
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Fic. 10. Calculated Nusselt numbers Nu as functions of N,
and N, at Re, = 30 000 for different radius ratios x.

with increasing N, is predicted. This behaviour can
be explained by the opposite effect of the distribution
of stabilizing centrifugal forces in the fluid and the
increase of shear stress, which stimulates turbulence.
In a narrow annulus and for a specified rotation rate,
the gradient of the circumferential velocity is larger
than in a wide annulus. The larger shear stress 1,,, in
the fluid leads to an excitement of turbulence and,
therefore, to an increase in heat transfer. On the other
hand, the laminarizing effect of the distribution of the
stabilizing centrifugal forces, expressed by the Rich-
ardson number Ri, gains influence in a wide annulus.
Corresponding effects appear for the case of counter-
rotating tubes, The region of minimal Nusselt number
also changes with the radius ratio. In the absence
of further experimental investigations, a comparison
between the theoretical results and experimental find-
ings was not possible.
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5. CONCLUSIONS

The inner and outer tube rotation in turbulent
annular flow produces significant effects on the vel-
ocity and temperature fields as well as on heat transfer
rate. These effects were studied experimentally in the
hydrodynamic and thermal entrance region and thco-
retically for fully developed turbulent flow in a rotat-
ing annulus. In the theoretical study a modified mixing
length hypothesis was applied, taking into account
the turbulence influence due to streamline curvature.

Both experimental and theoretical investigations
reveal a clear enhancement of the Nusselt number with
increasing rotation of the inner tube. An additional
counter-rotating outer tube leads to a further small
increase in heat transfer. On the other hand the Nus-
selt number decreases with co-rotating tubes down to
its minimum, when the outer tube rotates a littlc faster
than the inner tube. The mere rotation of the outer
tube, with the inner tube being at rest, has only an
unimportant influence on heat transfer for the radius
ratio r,/r, = 0.8575. However, the theoretical analysis
reveals a non-neglectable influence for other radius
ratios.

Finally, it has to be pointed out that Taylor vortices
could not be detected using the hotwire probe in the
range of parameters under consideration.

H. Prir7zER and H. Beer
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TRANSFERT THERMIQUE DANS UN ESPACE ANNULAIRE ENTRE DES TUBES
TOURNANT INDEPENDAMMENT AVEC ECOULEMENT TURBULENT AXIAL

Résumé—On étudie expérimentalement et analytiquement les effets de la rotation des tubes interne et externe
sur I’écoulement turbulent d’un fluide et le transfert de chaleur dans un espace annulaire concentrique. On
détermine expérimentalement le flux thermique dans la région d’entrée hydrodynamique et thermique de
P’espace annulaire et les profils de vitesse et de température en fin de section d’essai. L'étude analytique est
conduite pour ’écoulement et le transfert de chaleur d’un écoulement turbulent pleinement établi en
appliquant une théorie modifiée de longueur de mélange. Pour exprimer P'accroissement ou la suppression
de la turbulence a cause des forces centrifuges dans le fluide créées par la rotation du tube, la longueur de
meélange est modifiée par une fonction du nombre de Richardson. Les résultats théoriques pour 'écoulement
pleinement établi sont comparés aux données expérimentales a la position axiale de 60 diamétres hy-
drauliques en aval de 'entrée.

WARMEUBERTRAGUNG IM RINGSPALT ZWISCHEN UNABHANGIG .
VONEINANDER ROTIERENDEN HOHLWELLEN MIT TURBULENTER AXIALSTROMUNG

Zusammenfassung— Der EinfluB} der rotierenden Innen- und AuBenwelle auf die turbulente Stromung und
den Wirmetransport in einem konzentrischen Ringspalt wurde experimentell und analytisch untersucht.
Im Experiment wurde der Wirmeiibergangskoeffizient im hydrodynamischen und thermischen Ein-
laufbereich des rotierenden Ringspaltes sowie die Geschwindigkeits- und Temperaturprofile am Ende der

Versuchsstrecke bestimmt. Das theoretische

Modell

wurde mit Hilfe eines modifizierten Mis-

chungswegmodelles fiir die Stromung und den Wirmeiibergang einer voll ausgebildeten turbulenten Stro-

mung entwickeit. Die Anfachung oder Unterdriickung der Turbulenz, hervogerufen durch die Fliehkrifte

infolge der Rotation, ist in dem Rechenmodell mit einer Modifikation des Mischungsweges durch eine

Funktion der Richardsonzahl beschrieben. Die theoretischen Ergebnisse der voll ausgebildeten Stromung
wurden mit denjenigen an der Stelle z/d,, & 60 ermittelten MeBwerten verglichen.
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TEINJIOIIEPEHOC B KOJIBLIEBOM KAHAJIE MEXY TPYBAMH C TYPBVJIEHTHBIM
OCEBBbIM TEYEHUWEM, BPAIAIOIIMMUCSA HE3ABUCUMO IPVT OT APYTA

AsBoTamEs—JKCIEPEMEHTAIbHO H aHAJIMTHYECKH HCCJIEAYETCS BIMAHHE BPALIAIOLIMXCH BHYTpEHHEH B
HapyxHOH Tpy6 Ha TypOyneHTHOe TeyeHHE XHIKOCTH H TEIUIONEPEHOC B KOHIICHTPHYECKOM KOJIBLIEBOM
kanajie. IIpH 3KCIEpHMEHTAJIbHLIX HCCIIEIOBAHAAX ONPEENSIOTCH CKOPOCTh TeIUIONepeHoca Ha THApO-
IMHAMHYECKHM ¥ TEIUIOBOM BXOJHOM Yy9acTKe BPAIIAIOLLIETOCH KaHaa, a Takxe npodmm ckopoctell H
TEMIEpaTyp Ha TPAaHUIE TECTOBOro ydacrka. C HCHOJB30BAHHEM MOIM(DHIMPOBAHHON TCOPHH JUTHHBI
CMeIIIeHHs aHATHTHYECKH HCCIIEAYIOTCA TE9EHHE H TEIUIONEPEHOC NPH IOJHOCTBIO Pa3BUTOM TypOyeHT-
HOM TEYCHHH BO BpAILAIOIIEMCH KOJILUEBOM KaHaie. JIns ydeTa yBenH4eHHs WM DOAABJIEHHS TypOy-
JICHTHOCTH 33 CYET UEHTPOOEXHEIX CHJI B XHAKOCTH, BBI3BIBAEMRBIX BPAIICHHEM TPYORI, [UIHHA CMELIICHHS
MoaAduIEpoBaiach ¢ NOMOMbIo GyHKUAM yucna Puyapacona. CpaBHHBAIOTCA TEOPETHYSCKHE Pe3yiib-
TATBI H JKCIHEPHMEHTAJIbHBIC JAHHbIC MUIA MOJHOCTbIO Pa3BATOrO TEYEHHNA HA PACCTOAHMM BHH3 IO
TEYEHHIO, COOTBETCTBYIOWIETO 60 rHAPaBIHYECKHM JHAMETPAM.
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